Helmut Hasse: Mathematische Abhandlungen. 1

Frontmatter -- I. Quadratische Formen -- 1. Über die Darstellbarkeit von Zahlen durch quadratische Formen im Körper der rationalen Zahlen -- 2. Über die Äquivalenz quadratischer Formen im Körper der rationalen Zahlen -- 3. Symmetrische Matrizen im Körper der rationalen Zahlen -- 4. Darstellbarkeit von Zahlen durch quadratische Formen in einem beliebigen algebraischen Zahlkörper -- 5. Äquivalenz quadratischer Formen in einem beliebigen algebraischen Zahlkörper -- II. Normenreste und lokale Klassenkörper -- 6. Über die Normenreste eines relativ-zyklischen Körpers vom Primzahlgrad l nach einem Primteiler I von l -- 7. Direkter Beweis des Zerlegungs- und Vertauschungssatzes für das Hilbertsche Normenrestsymbol in einem algebraischen Zahlkörper im Falle eines Primteilers I des Relativgrades l -- 8. Neue Begründung und Verallgemeinerung der Theorie des Normenrestsymbols -- 9. Die Normenresttheorie relativ-abelscher Zahlkörper als Klassenkörpertheorie im Kleinen -- 10. Beweis eines Satzes und Widerlegung einer Vermutung über das allgemeine Normenrestsymbol -- 11. Führer, Diskriminante und Verzweigungskörper relativ-abelscher Zahlkörper -- 12. Théorie des restes normiques dans les extensions galoisiennes -- 13. Applications au cas abélien de la théorie des restes normiques dans les extensions galoisiennes -- 14. Normenresttheorie galoisscher Zahlkörper mit Anwendungen auf Führer und Diskriminante abelscher Zahlkörper -- 15. Die Gruppe der pn-primären Zahlen für einen Primteiler p von p -- III. Reziprozitätsgesetze -- 16. Das allgemeine Reziprozitätsgesetz und seine Ergänzungssätze in beliebigen algebraischen Zahlkörpern für gewisse, nicht-primäre Zahlen -- 17. Über das allgemeine Reziprozitätsgesetz der l-ten Potenzreste im Körper k¿ der I-ten Einheitswurzeln und in Oberkörpern von k¿ -- 18. Über den zweiten Ergänzungssatz zum Reziprozitätsgesetz der I-ten Potenzreste im Körper k¿ der l-ten Einheitswurzeln und in Oberkörpern von k¿ -- 19. Das allgemeine Reziprozitätsgesetz der l-ten Potenzreste für beliebige, zu l prime Zahlen in gewissen Oberkörpern der l-ten ¿inheitswurzeln -- 20. Das Eisensteinsche Reziprozitätsgesetz der n-ten Potenzreste -- 21. Über das Reziprozitätsgesetz der m-ten Potenzreste -- 22. Die beiden Ergänzungssätze zum Reziprozitätsgesetz der ln-ten Potenzreste im Körper der ln-ten Einheitswurzeln -- 23. Zum expliziten Reziprozitätsgesetz -- 24. Der 2n-te Potenzcharakter von 2 im Körper der 2n-ten Einheitswurzeln -- IV. Klassenkörpertheorie -- 25. Ein Satz über relativ-galoissche Zahlkörper und seine Anwendung auf relativ-abelsche Zahlkörper -- 26. Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage -- 27. Explizite Konstruktion zyklischer Klassenkörper -- 28. Zur Geschlechtertheorie in quadratischen Zahlkörpern -- V. Algebren -- 29. Über p-adische Schiefkörper und ihre Bedeutung für die Arithmetik hyperkomplexer Zahlsysteme -- 30. Beweis eines Hauptsatzes in der Theorie der Algebren -- 31. Die Struktur der R. Brauerschen Algebrenklassengruppe über einem algebraischen Zahlkörper. Insbesondere Begründung der Theorie des Normenrestsymbols und die Herleitung des Reziprozitätsgesetzes mit nichtkommutativen Hilfsmitteln -- 32. Die Normen aus einer normalen Divisionsalgebra über einem algebraischen Zahlkörper

206,00 CHF

Lieferbar


Artikelnummer 9783110046786
Produkttyp Buch
Preis 206,00 CHF
Verfügbarkeit Lieferbar
Einband Fester Einband
Meldetext Folgt in ca. 10 Arbeitstagen
Autor Hasse, Helmut / Leopoldt, Heinrich Wolfgang / Roquette, Peter
Verlag De Gruyter
Weight 0,0
Erscheinungsjahr 1975
Seitenangabe 556
Sprache ger
Anzahl der Bewertungen 0

Dieser Artikel hat noch keine Bewertungen.

Eine Produktbewertung schreiben