Harmonische Räume und ihre Potentialtheorie

_ .... _---------­ ------------ Während der letzten zehn Jahre konnte :man eine Neubelebung des Interesses für die Potentialtheorie beobachten. Zwei Ursachen lassen dies verständlich erscheinen: Einmal die innere Weiterentwicklung der Potentialtheorie. welche nach der Erfassung möglichst umfangreicher Klassen von Differentialgleichungen und Kernen drängt, zum anderen die Entwicklung der Theorie der Markoffschen Prozesse und der vor allem durch die bahnbrechende Arbeit von G.A.HUNT erwirkte Brückenschlag hinüber zur Potentialtheorie. Die genannte innere Entwicklung der Potentialtheorie hat, aufbauend auf Ideen von TAUTZ I} 9] , I} 0] , DOOB [!9] und BRELOT, zu einer Axiomatisierung der Theorie der harmonischen Funktionen ge­ führt mit dem Ziel eines gleichzeitigen Erfassens bereits vorliegen­ der Resultate über die Potentialtheorie RieTrlannscher Flächen und Greenscher Räume und einer Ausdehnung der Potentialtheorie der Laplace-Gleichung auf bislang unerforschte Klassen elliptischer Differentialgleichungen. A:m bekanntesten und a:m weitesten vollendet ist in dieser Richtung die in OS] dargestellte Theorie von BRELOT. Wichtige Ergänzungen verdankt man der These 1}1] von MadaTrle , HERVE . Während die Brelotsche Theorie ausschließlich elliptische Gleichungen betrifft, bemühten sich DOOB ~o]. KAMKE ~{1 und Verf. um die Einbeziehung auch parabolischer partieller Diffe­ rentialgleichungen zweiter Ordnung.

29,90 CHF

Lieferbar


Artikelnummer 9783540036050
Produkttyp Buch
Preis 29,90 CHF
Verfügbarkeit Lieferbar
Einband Kartonierter Einband (Kt)
Meldetext Folgt in ca. 5 Arbeitstagen
Autor Bauer, Heinz
Verlag Springer Berlin Heidelberg
Weight 0,0
Erscheinungsjahr 19660101
Seitenangabe 184
Sprache ger
Anzahl der Bewertungen 0

Dieser Artikel hat noch keine Bewertungen.

Eine Produktbewertung schreiben