Galoismodulstruktur von Einheitengruppen in Kreisteilungskörpern

Das vorliegende Buch beschäftigt sich mit der Galoismodulstruktur von l-Einheitengruppen in maximal reellen Teilkörpern l-ter Kreisteilungskörper. Primäres Ziel ist hierbei das Auffinden von Beispielen, in denen die l-Einheiten (modulo Z-Torsion) zwar projektiv, aber nicht frei sind. Das erste Kapitel fasst Grundlagen der homologischen Algebra und wichtige Eigenschaften von Pullback-Diagrammen zusammen. Darauf aufbauend wird in Kapitel 2 die Galoismodulstruktur der Kreiszahlen bestimmt. Diese Ergebnisse finden in Kapitel 3 bei der Untersuchung der l-Einheiten auf Projektivität Verwendung. Ausgehend von einer Liste vermuteter Klassenzahlen von R. Schoof kann die Frage nach der Projektivität der l-Einheiten für alle Primzahlen l zwischen 2 und 10000 beantwortet werden. In der in Kapitel 4 folgenden Untersuchung auf Freiheit lässt sich zumindest in einem Großteil der betrachteten Fälle eine Aussage treffen. Insbesondere ist es möglich, 19 Beispiele mit der gesuchten Eigenschaft zu identifizieren. Durch eine Verbindung zur Struktur der Einheiten wird zudem gezeigt, dass es in Körpern, deren l-Einheiten diese Eigenschaft besitzen, keine Minkowski-Einheit gibt.

91,00 CHF

Lieferbar


Artikelnummer 9783838120621
Produkttyp Buch
Preis 91,00 CHF
Verfügbarkeit Lieferbar
Einband Kartonierter Einband (Kt)
Meldetext Folgt in ca. 10 Arbeitstagen
Autor Romsy, Mario
Verlag Südwestdeutscher Verlag für Hochschulschriften AG Co. KG
Weight 0,0
Erscheinungsjahr 20151124
Seitenangabe 132
Sprache ger
Anzahl der Bewertungen 0

Dieser Artikel hat noch keine Bewertungen.

Eine Produktbewertung schreiben