Differential- und Integralrechnung III

wir begtigen uns mit dem Nachweis, daB die meBbaren Mengen eine a-Algebra bilden, auf welcher der Inhalt als a-additives Funktional operiert, und daB jede offene Menge meBbar ist. 2. Das zweite Kapitel bringt den Begriff der alternierenden Differentialform. Die multilineare Algebra wird in dem Umfang, in dem wir sie brauchen, mitbehandelt. Differentialformen sind die natlirlichen Integranden der in Kap. III untersuchten Flacheninte­ grale. Hier werden auch die wichtige Transformationsformel fUr die Integration in n Veranderlichen und der Stokessche Satz bewiesen. Die Integration erfolgt tiber (kompakte) "gepflasterte" Flachen, das Integral erweist sich dabei als unabhangig von der Auswahl der Pflasterung. Da sich jede glatte Flache ~ in natlirli­ cher Weise pflastern laBt, ist eine Integration tiber ~ stets mo­ glich. Ahnlich dtirfte jede kompakte semianalytische Menge (mit Singularitaten!) Pflasterungen besitzen. Die letzten beiden Paragraphen des dritten Kapitels sind dann den Kurvenintegralen tiber beliebige rektifizierbare Wege gewid­ met. Urn das Integral in dieser Allgemeinheit zu erhalten, ist eine Untersuchung der absolut stetigen Funktionen notwendig. Damit werden auch die bereits in Band I angegebenen Satze tiber die Variablentransformation im Lebesgue-Integral und tiber den Zu­ sammenhang zwischen Differentiation und Integration bewiesen.

67,00 CHF

Lieferbar


Artikelnummer 9783540083832
Produkttyp Buch
Preis 67,00 CHF
Verfügbarkeit Lieferbar
Einband Kartonierter Einband (Kt)
Meldetext Folgt in ca. 5 Arbeitstagen
Autor Lieb, I. / Grauert, H.
Verlag Springer Berlin Heidelberg
Weight 0,0
Erscheinungsjahr 19771001
Seitenangabe 228
Sprache ger
Anzahl der Bewertungen 0

Dieser Artikel hat noch keine Bewertungen.

Eine Produktbewertung schreiben